If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+98-23=548/4
We move all terms to the left:
x^2+98-23-(548/4)=0
We add all the numbers together, and all the variables
x^2+98-23-137=0
We add all the numbers together, and all the variables
x^2-62=0
a = 1; b = 0; c = -62;
Δ = b2-4ac
Δ = 02-4·1·(-62)
Δ = 248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{248}=\sqrt{4*62}=\sqrt{4}*\sqrt{62}=2\sqrt{62}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{62}}{2*1}=\frac{0-2\sqrt{62}}{2} =-\frac{2\sqrt{62}}{2} =-\sqrt{62} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{62}}{2*1}=\frac{0+2\sqrt{62}}{2} =\frac{2\sqrt{62}}{2} =\sqrt{62} $
| 3n-2=16 | | 641=x-365 | | 33a^2+18a+32=0 | | y=8E-05(0.1160) | | 2x-5=60-3x | | 2x+15=60-x | | 3x+(2x-5)=180 | | 3x-5(2x-8)=10 | | 4-(3-2x)=3(x-1)+2 | | a^2+24a=-80 | | 5(y+2)=+18-(1-3y) | | 5(y+2)=+8-(1-3y) | | 41x-2x=7x+5 | | x-1/2+2=2x-2/3 | | 2x−2=2(x−1) | | −x+7=3x−5 | | 22=1/2h(10+1) | | -6/7u-1/3=1/2 | | 10–x+2x=4x+1 | | 3/8x-x=0.4 | | 186=35-v | | x-4.5=5.33 | | u=3/4=1/8 | | (2-u)(4u-9)=0 | | 2=y+4 | | 5(3+m)=45 | | 2x+24=6x=6·x | | 24-10x=35 | | 3(7+v)=36 | | 4x2-32x+12=0 | | 205x=20 | | 6x×5=35 |